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1. Introduction

An important goat of carly vision is the computation of a representation of the
visible surfaces in an image. in particular the determination of the oricntation of
those surfaces as defined by their local surface normals [Marr 1982, Brady 1982].
Many processes contribute to achicving this goal, stercopsis and structure from
motion being currently the most studied in image understanding. ‘Three other
important contributing processes are shape-from-contour. shape-from-texture--
gradients. and shape-from-shading. Several psychophysical demonstrations show
that shape-from-contour is significantly more powerful than shape-from-texture-
gradicnts [Clark ct. al. 1956, Gruber and Clark 1956, Braunstein and Payne,
1969}). Similarly, Barrow and ‘Tenenbaum {1981, Figure 1.3 ft] suggest that
shape-from-contour is a more cffective clue to shape than shape-from-shading,

In this paper we consider the computation of shape-from-contour. Figure 1
shows a number of shapes that are typically perceived as images of surfaces
which are oriented out of the picture plane. The corresponding (sets of ) surface
normals (up to tilt reversal) are shown to the right. It may be supposed (sec
for example [Gregory 1973, pages 168ft]) that the slant judgements in Figure
1 are largely determined by familiarity with regular shapes such as circles and
squares. Figure 2 strains that hypothesis (though Gregory propeses that we are
familiar with the shape of puddles) and suggests that the computation is based
on more general knowledge of shapes and surfaces. The method we propose
is based on such general knowledge, namely a preference for symmetric, or at
least compact, surfaccs. Note that the contour does not need o be closed in
order t be interpreted as oriented out of the image plane. Finally, Figure
3 shows that, in general. contours are interpreted as curved three-dimensional
surfaccs.

We develop an extremum principle for determining three-dimensional surface
oricntation from a two-dimensional contour.  Initially, we work out the
extremum principle for the cases illustrated in Figures 1 and 2, that is, assuming
a priori that the contour is closed and that the interpreted surface is planar.
Later, we discuss how to extend our approach to open contours and how to
interpret contours as curved surfaces as shown in Figure 3.

‘The extremum principle maximizes a familiar measure of the compactness or
symmuetry of an oriented surface, namely the ratio of the area to the square of
the perimeter. It is shown that this measure 1s at the heart of the maximum
likelihood approach to shape-from-contour developed by Witkin [1981] and
Davis, Janos. and Dunn {1982]. The maximum likelihood approach has had
some success mterpreting irregularly shaped objects. The method is ineffective,
however, when the distribution of image tangents is not random, as is the
case, for example. when the image is a regular shape, such as an cllipse or
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Figure 1
Two-dimensional contours that are often interpreted as plancs that are oriented with

respect to the image plane. The commonly judged slant is shown next to each shape.

— Q<

Figure 2

Some unfamiliar shapes that are also interpreted as planes that are oriented with respect
(o the image plane. The shape on the left is from [Gicgory 1973, fig. 10.9]. the others
from [Witkin 1980, p 29 and 94).

a paraliclogiam,  Our extremum principle interprets repular figures correctly,
We show that the maximum likelihood method approvimates the extremum
principle for irregular figures: but that the maximum likehihood method does
not compute the correct slant tor an ellipse. Watkin [1981, Ligute §] provides
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Figure 3
Some shapes that are interpreted as curved three-dimensional surfaces.

empirical evidence that the maximum likelihood method computes a good
approximation to the perceived tilt but underestimates the slant. We prove in
Appendix A that the maximum likelihood method consistently overestimates the
slant of an ellipse. A more thorough investigation of the difference between
the Extremum Principle and the Maximum Likelihood method is needed.

Onc class of figures that are readily perceived as lying in a planc other than
the image plane are skew symmetrics, which are two-dimensional lincar (affine)
transformations of real symmetrics. Kanade {1981, page 424] has suggested a
method for determining the three-dimensional orientation of skew-symmetric
figurcs, under the "heuristic assumption” that such figures are interprcted as
oricnted real symmetrics. We prove that our extremum principle necessarily
interprets skew symmetrics as oriented real symmietrics, thus dispensing with
the need for any heuristic assumption to that effect. Kanade shows that there
is a onc-paramcter family of possible orientations of a skew-symmetric figure,
fornmiing a hyperbola in gradient space. He suggests that the minimum slant
member of the onc-parameter family is perceived In the special case of a real
symmictry, Kanade's suggestion implics that symmetric shapes are perceived as
lving in the image planc, that is having zcro slant. It is clear from the cllipse
in IFigure 1 that this is not correct. Our method interprets real symmetries
correctly.

First. we review the maximum likclihood method. In Scction 3, we discuss
several previous extremum principles and justify our choice of the compactness




measure.  In Secuon 3, we derive the mathematics necessary 0 exticinize
the compactiness measare, and refate the extremum pnnaple o the maximuom
likchhiood method.  In Scetion 50 we investigate Kanade's work on skew
ssmimnetry. One approach o extending the extremum principle to interpret
cunved surfaces. such as that shown in Figure 3, is sketched in Section 6. In
the final section, we relate this work o the psychophysical literature on slant
ostmation and image understanding work on shape from texture.

2. The Sampling Approach

, Witkin [1981] has treated the determination of shape-from-contour as a problem
of signal detection. Recently, Davis, Janos, and Dunn [1982] have corrected
some of Witkin's mathematics and proposed two efficient algorithms to compute
the orientation of a planar surface from an image contour, Witkin's approach
uses a geometric model of (orthographic) projection and a statistical model of
(a) the distribution of surfaces in space (statistics of the universe) and (b) of
' the distribution of tangents to the image contour. We shall adopt the gcometric
model. but dispense with the statistical model in favor of an extremum principle.
First, the geometric model. Assume that the image planc is horizontal with
coordinates (z,y) (see Figure 4) . To obtain a plane with slant o and til
7. we rotate (z,y) by 7 in the image plane and then rotate the image plane
by o about the new y axis. Assume that the coordinate frame in the plane )
(o,7) Is chosen so that it projects into (z,y). (In Section 4. we describe this ;
4 transformation more precisely. see also Davis. Janos. and Dunn [1982, p3].)
Now supposc that a curve is drawn in the plane {0, 7) and denote by § the
angle that the tangent makes at a typical point on the curve. l.ct a be the
tangent angle in the image plane at the point corresponding to 8. Then o and
3 arc related by:

tan g

tan(a — 1) = oo 2.1
We now turn to the statistical model. which consists of two assumptions
called isorropy and independence. lsotropy reasonably supposes that all surface
orientations are cqually likely to occur in nature and that tangents to surface
curves are equally likely in all directions. More succinetly, it is assumed that the
quantities (8, 0, 7) arc randomly distributed and their joint probability density

function ("density”) D(8,a, 1) is given by [Davis, Janos, and Dunn, 1982]:

D(B,o,7) = -7-:2; sing (2.2)

We assume that the ranges of the angles are 0 <6 € 5,0 < 7 < 1,0 <
< 7. Sinularhy, the density of {o, 7) iy given by ¢
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Figure 4
The geometry of orthographic projection. See text for details of notation,
1.
D(o,7) = —sing (2.3)
T

‘The independence assumption requires that the image tangents {a,:1 < ¢ < n}
are statistically independent. That is, it is assumed that the tangent directions
at different points on the image curve arc independent. This is only true if
the contour is highly irregularty shaped. or if the number of samples is smali.
In any casc. the assumption of independence is an inherent weakness of the
sampling approach (sce for example {Witkin 1981, p. 36)).

Witkin [1981, p. 25 - 26] shows that the joint density function D(a,0,7) is
given by:

D(a,0,7) = iz sin o cos o . (2.4)
™ cos?(a — 1) + cos? osin®(a — 7)
For the conditional density D(ajo, 7) we find:
Diafo,7) = L- coso (2.5)

T cos?(a — 1) + cos? osin’(a — 1)

Denote the sample {ay, a2,...a,) by A (the sample is independent by
assumption). It has conditional density




D(Alo,7) = ﬁ D(aslo, 1) (2.6)
1:=1

By Baycs' formula we obtain

D(o,7|A) = _I)_(A|o,r)l)(0,'2)_ - (2.7)
[ J D(Alo,7)D(0, 7)dodT

Obscrve that the numerator is independent of o and 7. T'he sampling approach
takes a random sample A and defines the most likely orientation of the plane
(0,7) 1o be that which extremizes D(o,7{A). Witkin [1981] quantizes o and
7. and describes an algorithm to find the maximizing (o,, 7). Davis, Janos.
and Dunn [1982] develop a more efficient algorithm that first estimates o and
7 and then uses those estimates in a Newton iterative process. ‘They provide
cvidence that their method 1s more accurate than Witkin's, Curiously. however,
they state [Davis, Janos, and Dunn 1982, p 24] that "the iterative algorithm was
not used [in the experiments they report] because the intitial estimates (whose
computation is trivial) are very accurate and the iterative scheme often failed
to converge to the solution™.

3. Extremum Principles.

Brady and Horn [1983] survey the use of extremum principles in image
understanding. The choice of performance index or measure to be extremized,
and the class of functions over which the extremization takes place. are justified
by appealing o a model of the geometry or photometry of image forming and
constraints such as smoothness. For example. the use of extremum principles
in surface reconstruction is based upon surface consistency theorems [Grimson
1981, 1982, 1983. Yuille 1983} and a thin platc model of visual surfaces {Brady
and Horn 1983, ‘Terzopoulos 1983].

There arc several plausible measures of a curve that might be extremized in
order to compute shape-from-contour. First. § «%ds, where & is the curvature
of the contour. has been investigated as a cunve of least encrgy for interpolating
across gaps in plane curves {Horn 1981]. Here we seek a measure of a curve
that is extremized when the plane conwining the curve is slanted and tilted
appropriately. Contrary to what appears to be a popular belief, given an cllipse
in the image plane. § x2ds is nor extremized in the plane that transforms the
cllipse mto a circle. Appendix B comtains a proof of this assertion. Since
clhipses are normally percerved as slanted cireles, we reject the square curvature

as ¢ suitable measure.
Another passible measure is proposed by Barrow and Tenenbaum [1981, p89].
Asstmng planarity (the torsion 7 is z¢ro). it reduces o
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Onc objection to this measure is that it involves high-order derivatives of the
curve. ‘this means it is overly dependent on small scale behaviour. Consider,
for example, a curve which is circular except for a small kink. ‘T'he circular
part of the curve will contribute a tiny proportion to the integral cven when
the plane containing the curve is rotated. The kink. on the other hand, will
contribute an arbitrarily large proportion and so will dominate the integral no
matter how small it is compared with the rest of the curve. This is clearly
undcsirable. For example, it suggests that the measure will be highly sensitive
te noise in the position and orientation of the points forming the contour.

A sccond objection to the measure proposed by Barrow and Tencenbaum is
that it is minimized by, and hence has an intrinsic preference for, straight lines,
for which dx/ds zcro. This means that the measure has a bias towards planes
that correspond to the (non-general) side-on viewing position. These planes are
perpendicular to the image plane and have slant 7 /2.

We base our choice of measure on the following obscrvations.

1.  Contours that arc the projection of curves in planes with

large slant are most cftective for eliciting a three-dimensional
interpretation.

2. A curve is foreshorted by projection by the cosine of the slant

angle in the tilt direction, and not at all in the orthogonal dircction.

We conclude that three-dimensional interpretations are most readily clicited

for shapcs that are highly clongated in one direction. Another way (o express

this idea is that the image contour has large aspect ratio or is radially asymmetric.

The measure we suggest will pick out the planc orientation for which the curve
is most compact and most radially symmetric. Specifically our measure is

_ (Area) (3.1)

(Perimeter)?’ )
This is a scale invariant number characterizing the curve. For all possible curves
it is maximized by the most compact one, a circle. By compact, we mean most
radially symmetric. This gives the measure an upper bound of 1/47. Its lower
bound is clearly zero and it is achicved for a straight line. 1t follows that our
measure has a built-in prejudice against side-on views for which the slant is
n/2.

In general. given a contour. our extremum principle will choose the orientation
in which the deprojected contour maximizes M. For example an cllipse is
interpreted as a skinted circle. The tilt angle is given by the minor axis of the
cllipse. It is also straightforward to show that a parallelogram corresponds to a
rotated square. Appendix C discusses the interpretation of several simple shapes.

.




In particular, an cllipse is interpreted as a slanted circle, a parallelogram as a
slanted square, and a triangle as a slanted equilateral wiangle. In Section § we
extend the parallelogiam result to the move general case of skewed symmietry,

We note that the quantity M is commonly used in pattern recognition and
industrial vision systems [Agin 1980, Pavlidis 1977, Ballard and Brown 1982]
as a feature that measures the compactness of an object. Furthermore, we can
show that the measure M defined in Fq. (3.1) is at the heart of the geometric
model in the maximum likelihood approach.

From Section 2, we sce that the maximum likelihood approach maximizes
the product of a number of terms of form

cos a

fla) = (3.2)

cos?(a — 1) + cos? osin®(a — 7)
Differentiating Eq. 2.1 with respect to the arc length s; along the image curve
and sp along the rotated curve respectively we obtain

krdsy 1

krdsg  f(a)
where k7 and K are the curvature at corresponding points of the image contour
and its deprojection in the rotated plane respectively. In fact. k; = da/ds; and
kg = dB/dsp. There is no o or 7 dependence in the numerator of cquation
(3.3). We can write cach term «ds as (ds ds)/(pds) where p is the radius of
curvature. Now observe that (pds)/(ds ds) is just a local computation of area
divided by perimeter squared! Hence maximizing cach f{a) in the maximum
likelihood approach is equivalent to locally maximizing arca over perimeter
squarcd. In section (4) we will examine this connection more rigorously.

Finally we note that the arca, as well as the perimeter, can be obtained by

an integral round the contour. If n is the normal to the curve then it is a
straightforward application of Stokes’ Theorem to show that

(3.3)

(Areajn = % f X dr, (3.5)

where (Area) is a scalar quantity, and r is a vector coordinate system in the
planc of the figure. 'this formula simplifics the calculations and means the
perimeter and the ared can be computed simultancously.

4. Extremizing the Measure

We now write down the measure for a cunve with arbitrary orientation and then
extremize with respecet to the orientation. et the unit normals o the image
plane and the rotated plane be k and n respectively. ‘the stant o of the rotated
planc is given by the scalar product

i




coso = k-n (4.1).

Let Tp and 'y be the contour in the rotated and image planes. A vector 1 in
the image plane satisfies r-h = 0, and is the projection of a vector v in the
rotated plane that satisfies v - n == 0. The projection relationship between v and
its image r is defined by:

r=kX(vxkl=v—(v-kk (4.2)
_nx(rxXk) (n-kKr—(n-r)k
'TTeN T (N (43),

where X denotes vector product. Now I'g and T'; have (vector) arcas Ag and
Ay given by

lf

AR_§ erxdv (4.4)
lf

A= d 4.5

1 2 I"I')( r ( )

Observe that the area vectors have the same dircction as the normal to the plane
containing the arca. In particular. Ag is in dircction n and A; is in direction
k. Substituting Eq. 4.3 into Eq. 4.4 and using Eq. 4.1, we find

kX {nXA
A=A+ —(————L)-
(n-k) (4.6)
= kA
coss
It follows that
[l sl
Agll = —— 4.7
gl = 23 (1)
(We recall that the range of o guarantees that cos o is positive.
The perimeter lengths Pg and I’ are given by
Pa=§ vl (48)
Fr
Pi=§ (49)
ry
Substituting Fq. 4.3 into Fq. 4.8 gives
n-dr)? }
Pgp = f ary? 4 (4 4.10
kR Iy {( l‘) + (ll . k)2 ( )

v
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In general there is no simple relationship between the perimeters analogous to
Eq. 4.6 between the arcas. Nevertheless, by Fqg. 4.7,

ARl llALL

4.11
P4 Plcosa (4.11)

and so our extremum principle is cquivalent w0 extremizing cosz o Pp, which
we write as

4
_f {(n K)dr +('(' d’;} (4.12)

We cxtremize this with respect to the orientation n of the rotated plane,
maintaining the constraint that n is a unit vector by a lagrange multiplicr A/4.
This gives

kf ( n-k)dr® 4 (- drf? ) &(" -k)%dr® — (n - dr)?

(n-k) (n-k)?
(4.13)
R {n-dr) (n- k)(n - dr)dr
+.f((n I\)dr+( k)) (n k)
4+ An=290
Taking scalar products of Eq (4.13) with k and na. respectively, gives
0=(n-kA
(n-dr)? (n' k)2dr? — (n - dr)?
+ ?(((n k)dr? + (——)—) _“—Wh (4.14)
0=A .
.dn?\ . k)2dr2 . drl2
+0f ((n K + ('('“ d;))) (n-k %’]f)f" 2 (1)

We use Fg. 4.14 10 remove the integral cocflicient of k in Fq. 4.13, allowing
us to express kg, 4.13 as a sum of the sccond integral and k X (k X n) times
A We now use Bg. 415 to climinate A from this new form of Eq. 4.13. We
recall that the unit tangent t is defined by '

dr
ds’
where s is arc length along the contour. [t follows that

t =

dr = (ds.




Recalling that (n-K) - : coso. we find

- i
2/{00320 + (n-()z} g(t -n)dr = —k X (k X n)f{cosza + (n-l)z}.ds
(4.16)
where t = dr/||dr]| is the unit tangent to the image contour.
I.et the unit vectors in the 7 and y directions in the image planc he i and §
and the normal tw the image planc k. By definition, coso = k- k. ‘The tit 7
ts defined by

COST = —'—n— (4.17)
sing
. n

sinT = —J— (4.18)
sino

The tangent vector t and the normal n can be written:
t = cosai + sin aj (4.19)
n = sing cos7i + sin o sin 7j 4 cosok (4.20)
where o is the tangent angle in the image. We now form the scalar products

of kg. 4.16 with i and j to obtain (with appropriate cancelling)

2‘7((cos2 0 + sin? ocos?(a — 7))~} cos(a — 7) cos ads )
(421
= cos rf(cos2 0 -+ sin? ocos?(a — T)){‘ds

and

2 f(cosz 0 + sin® gcos®(a — 7))~ ¢ cos(a — 7)sin ads
(4.22)
= sin7 f(cosz o + sin? gcos?(a — 7))tds

we can rewrite these equations, afier multiplying by factors of 4 cos7 and
+ sin7, as:

Zf’ (cos? 0 + sinocos?(a — 7)) "} cos?(a — 7)ds

= f(cos2 o + sin?ocos*(a — 7))tds (4.23)

2/(cos2 0 + sin® ocos?(a — r))"* cos(a — 7)sin(a — 1)ds
=0 (4.24)
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We use Egs. 423 and 4.24 in Appendix D) to determine the extremizing
orientation for a skew symmetry. We can rewrile these equations in the form:

d 1 .

-a-;(——;— f(cos2 0 + sin®ocos?(a — 1))%ds) =0 (4.25)
cos? o

d ( 1 2 . 2 2

— (cos® o + sin“ ocos*(a — -r))’fds) =0 (4.26)

07\ cost o f

to emphasize that they correspond to extremizing with respect to ¢ and 7.

We can implement the extremum method directly from Egns. (4.25) and
(4.26) by quantizing the tangent angle ay, slant 05, and tilt 7x. replacing the
integral by a sum. 'This gives good results, cven though we use fixed point
integers in our cdge finder. A multi-level search speeds the algorithm by a
factor of ten. For large slant the ratio of the greatest to least value of the
expression is large. and the result is numerically well-conditioned. For smaller
slants (less than about 45 degrees in the case of an ellipse) the ratio is small
and the result poorly conditioned. so that round-off crrors can be significant.

To conclude this Section, we show that these cquations are similar, though not
identical. to those obtained by the maximum likelihood method in the limit as
the number of sampled tangents tends to infinity. 1o see this we recall from Eq.
2.7 that this method involves extremizing (Ao, 7) with respect to o and 7.
Since the denominator is independent of ¢ and 7. this amounts to exiremizing
D(Alo,7)D(0, 7). This is the samce as extremizing log D(Aja, 7)D(0, 7). Using
2.3. 2.5 and 2.6 wc obtain:

n
E = nlogcoso + logsino — Z log(cos?(a, — 7) + cos? gsin*(a, — 7)).
1=1
(4.27)
where we have ignored factors of 7 which will vanish on differentiation.

Dividing E by n and taking the limit as n tends to infinity gives:

F = logcoso fdr — flog(cos’(a — 1) + cososin?(a -- 7))dr. (4.28)

Using the identity:

cos’(a — 7) - cos? gsin?(a — 7) = cos® o + sin®gcos?(a — 1) (4.29)

gives

F =logcoso f dr — flog(cos2 0 + sin? acos?(a — 7))dr. (4.30)
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Phis formulbie s sunilar e Fgs 425 and 4.26. Thus we expect the Fatremum
Method to gnve similar results o the Samphing Mcthod when the contour s
sulliciently cgadar. However, we can show formally that the Sampling Method
and the Fxtuemum Method are not equivalent, In Appendis A we show that the
Sampling Mcethod mverestimates the slant of an ellipse. The precase discrepancy
between the methaods, and its practical consequence for computng shape from
contour is currenth under investigation.

5. Skew Symmetsy

We now consider a more general class of shapes for which the maximum
likelihood approach is not cffective.  Kanade [1981. sec. 6.2] has introduced
skew symmetries, which are two-dimensional fincar (affine) wransformations of
real symmetrics. There is a bijective correspondence between skew symmetries
and images of symmetric shapes that lic in planes oriented to the image plane.
Kanade proposes the heuristic assumption that a skew symmetry is interpreted
as an oricnted real symmetry, and he considers the problem of computing the
slant and tilt of the oriented planc.

Pdenote the angles between the z-axis of the image and the images of the
symmetry axis and an axis orthogonal to it (the skewed transverse axis) by a and
B respectively, ‘The orthogonality of the symmetry and transverse axes cnable
one constraint on the orieptation of the plane to be derived. Kanade uses
gradient space (p, g) [Horn, 1977, Brady. 1982] 1o represent surface orientations.
He shows [Kanade 1981, p. 425] that the heuristic assumption is cquivalent to
requiring the gradient {p, ) of the oricnted plane to lic on the hyperbola

picos? (_a_—a—ﬁ) — g7sin? (—()‘————;—ﬂ—) = — cos(a — fi) (5.1)

where

P = pc“(a +ﬂ) +QS‘m(9;;l£)’
Q= —psin(f]_tg) + qcos(g—%'.é).

Kanade [1981, p. 426] further proposes that the vertices of the hyperbola,
which correspond to the Ieast slanted orientation. are chosen within this one-
parameter tamily. This proposal is in accordance with a heuristic observation of
Stevens [1980]. In the special case that the skew symmetry is a real symmetry,
that is in the case that a — 8 = +7/2. the hyperboka reduces to a pair of
orthogonal lines [Kanade 1981, page 426] passing through the origin. In such
cases the skant is zero. In other words, Kanade's proposal predicts that real
sypnncties e nevitably anterpreted as Jying o the image plane, and heme

(52)
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and

Bo= 2yl 4 (b— a)?. (5.4)
From Figure 6b we find
Al = 2alcosa + (b — a)lcosa

(5.5)
= A, cosa

and

P, = \/lzcosza + (b—a+Isina)? + \/lzcosd2 + (b — a — lsina)?.
(5.6)
We nced to show that
cos 1
< —. (5.7)
P:2 P2

13

This is equivalent to showing

(2cosa — 1)(12 + (b —a)?)

2 2 . } 2 2 : }
< {l +(b—a) +2(b—a)lsma} 4+ (b—a) -2(b—a)lsma}
(5.8)
‘This condition clearly holds for 7/2 > a > 7/3. Assume therefore that
0 < a < 7/3. Squaring both sides of (5.8), we sce that the condition is
cquivalent to

sin? o

B4+b—a) 4 Pb—a)2+ ) > 0. (5.9)

cos? a — cos o
On completing the square we see this always holds provided
4cosa — 1 — 3cos?a > 0 (5.10)

This is so provided § < cosa < 1. thatis for 0 < a < §. It follows that the
ratio of the arca to the perimeter squared is maximized for cach region when

a=20.

We now partition the shape into n regions as shown in Figure 5. Lt the ¢4
block have arca A, and perimeter P, when the skew angle is a, and denote
the arca by A, and the perimeter by P, when a is zero. It follows from the
above results that

Al = Aicosa (5.11)
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Figure 6
a. A basic region before skewing it. b. The resull of skewing the region shown in (a)

through angle a.

and
A A
5 < = (5.12)
PR
We conclude from Fgs. (5.11) and (5.12) that
Piz > P%cosa. (5.13)
Hence we obtain
n n
z P? > cosa Z P2 (5.14)
=1 =1
n n
YA =cosa ) A. : (5.15)
1=] 1=1
It follows that
S oAl A
o1 o Lzl T (5.16)

n o pr2 -\n 2

PIUEPY LD DHERY
and taking the limit as n tends to infinity shows that our extremum principle
interprets a skew symimetry as a onented real syminetry,




17

6. Strategy and Sensitivity

In Section 3. we suggested that radially asymmetric. elongated. or non-compact.
contours most readily chicit three-dimensional interpretations. We then proposed
a compactness measure A /122, and suggested that perceived surfice orientation
corresponds to the slant and tilt that maximize the measure. We brietly discussed
the role of extremum principles in computer vision (Brady and Horn [1983)
present a fuller discussion). and criticized Barrow and ‘{ enenbaum’s measure on
the grounds that it is highly sensitive to noise. In Sections 4 and § we analyzed
the extremum principle and showed that it corresponded closely to human
perception of oriented planar contours, and that it interprets skew symmetries
as oriented real symmetries.

In this Section we return to the discussion in Section 3. concentrating on two
additional questions concerning our measurc. First, we ask whether there are
specific reasons why a svisual system should adopt the strategy of extremizing
our measurc. We suggest that the extremum principle not only determines the
orientation of the viewed curve. but provides an estimate of the stability of the
interpretation. . We relate this to the idea of generat viewpoint. Second, we
show that the compactness measure is relatively insensitive to noise and to the
scale at which the image is sampled. To this end we consider two cases: (i)
adding a sinusoid to the contour, (i) assuming that the image can be modelled
in terms of fractals [Mandelbrot, 1982].

Viewing position and stability

Consider viewing a given planar curve from the hemisphere of all possible
dircctions.  Consider further the way the image changes when the viewpoint
is shifted shghtly. A smooth curve will hardly change with a slight change of
viewpoint from most viewing directions. We call these viewing dircctions stable
viewpownis. Stable viewpoints can be grouped into regions whose boundaries
correspond to viewpoints where the contour changes rapidly for a slight change
of viewing position. These stable regions will be quite large for images of
smooth planar curves and smooth curved surfaces. We suggest that image
contours are interpretated as curves that are viewed from stable viewpoints,
‘This is the essence of the general viewpomnt constraint in computer vision. We
arc able to estimate how stable a given viewpoint is.

Onc way to find stable viewing positions is to dcfine a simuilarity measure for
viewpoints and then find the extrema of this incasure.  Sutherland [personal
communication] has proposed A/% as a similarity measure. based on empirical
studies of animal perception. If this is correct. extremizing A/ P2 corresponds
to finding the stable viewing positions of a contour, and, as @ result, the stable
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interpretations of a contour, defined to be those which observers at general
positions are nost likely 1o see. This suggests that assuming general viewing
pusition corresponds o assurning mterpretations around which our compactness
measure is extremized and where it varics slowly,

We illustrate this idca by considering an cllipse. For an cllipse the stable
viewing position corresponds to interpreting the ellipse as an oriented circle.
Even if the circle is slanted by as much as thirty degrees. the value of A/P?
hardly changes, as our algorithm demonstrates. and so the circle is a stable
interpretation, 1f the algorithm is applied to an cllipse with large cccentricity,
corresponding to large slant, A/P? changes rapidly for slight changes to the
viewing position. Sq if we look at an cllipse from all possible viewing angles
it is most likely to appear as a circle and so interpreting an cllipse as a slanted
circle is a good strategy.

These results are preliminary. and they will be rigorously devcloped in a
further paper.

Sensitivity of the compactness measure to noise

The sccond question concerns the sensitivity of the measure to noise and to
the scale at which an image is sampled. Since our mcasure involves fewer
derivatives of the contour than measurces such as that proposed by Barrow
and Tenenbaum. it should be relatively insensitive to noise.  Although our
present algorithim and the sampling method are essentially equally sensitive, it
is possible to develop a less sensitive algorithm to implement our measure. ‘The
sampling mcthod inevitably involves calculating tangents, however, and hence
is inherently sensitive to noise and scale. For example if the image contour
is continuous, but not differentiable, the sampling method cannot (strictly) be
applied. Similarly if the oricntation of the tangent to the contour has a large
high frequency component, the sampling approach will be very sensitive to
noise.

Consider the sensitivity to noise of the extremum principle. Clearly, the
perimeter I depends on the scale at which the image is viewed. while the arca
A is much less dependent. It follows that the ratio A/PP? varies with scale.
If a sinusoid is added to a smooth contour. for example, the arca will remain
approximately the same but the perimeter will change significantly. This does
not imply. however. that rhe extrema of A/1°2 vary with scale. For example, it
is casy to show that if a sinusoid is added to the contour. the exiremum of the
arca over the perimeter squared is eflfectively unchanged.

Similarly, suppose that the image can t.e approximaied by a fractal [Mandelbrot,
1982]. I we measure the image at a small fractal scale constant £, the perimeter
will be given by




Py == 109, (6.1)

where Fis independent of [oand d 2> 1 is the fractal dimension. Provided 1 is
small. the value of A is essentially independent of £ since the fractal tends to a
limit contour. with finite arca. as [ goes to zero. Now we extremize A/P? for
all contours which can he projected into the image contour. ‘This is equivalent
W extremizing log(A/ P?) which, using (6.1), we write as

log(:;):logA-—'zlogF—iz(l —d)logl. (6.2)

We now extremize this over ¢ and 7 (FEgs. 4.24 and 4.25), and note that the
term involving { is independent of o and 7 and disappear. It follows that the
extrema of A/F? are independent of the scale of viewing for an image that
can be approximated by a fractal.

7. Interpreting image contours as curved surfaces

Figure 3 shows a number of contours that are interpreted as curved surfaces,
In this section we discuss one method for extending our extremum principle
to this general case. The key observation, as it was for Witkin [1981], is that
our method can he applied locally. To do this. we assume that the surface is
locally planar. At the surface boundary, corresponding to the deprojection of
the image contour. the binormal coincides with the surface normal. The idea
is to compute a local estimate of the surface normal by the extremum principle
described in the previous sections and then to use an algorithm, such as that
developed by Tersopoudos [1983]. to interpolate the surface orientation in the
mterior of the surtace. ‘The method is closely related to that proposed by Brady
and Grimson [1981] tor pereeiving subjective surfaces.

The main question concerns how to apply the extremum principle locaily.
We are currently investigating the following approach. Consider the circle of
curvature to the space curve that is the deprojection of the contour. One way
1o define the circle of curvature is as the best fitting local circle through three
points (or muore if one assumes noisy data and makes a least squarcs cstimate)
on the space curve near the point in question. The circle of curvature projects
into an cllipse. We compute the best fitting cllipse at cach point on the image
contour. and compute from it a local cstimate of the surface vrientation by
finding the slant and tilt of the corresponding cirele, tnterpreted as the circle
of curvature. It is casy to show that so long as the surface foreshortening is
diffcrentiable, this is a good estimator of the circle of curvature and hence of
the local surface normal.

It requires 5 parameters to define an arbitrary cllipse.  Computing the
hest fitting cMtipse in the general case is a complex nonlincar problem best
approdached using a numerical descent method, though several algorithms have




been published recently for computing best fitting ellipses [Booksicin 1979, Agin
1981, Nakagawa and Rosenfeld 1979, Sampson 1982). 1f we assume that the
normal to the space curve is not significantly foreshortened, we can compute
the cllipse center and major axis from the curvature of the contour at the point
in question. The slope of the contour at that point also defines the orientation
of the ellipse. Teaving a much simpler one-parameter problem.

We note that perceptually the strongest local cues to surface orientation
correspond to points of high curvature. This 1s consistent with our method of
locally estimating surface oricatation by fitting local ellipses.. Recall that our
compactness measure was inspired by the observaton, for example on cllipses,
that large slant is an cffective cue to swrface orientation and in the case of
an cllipse this produces points of high curvature. In fact, we can show that
numerical conditioning of the estimator of slant increases monotonically with
the slant. Conversely, for straight line portions of a contour, the curvature
is zero, and the surface is focally planar. Hence surface orientation docs not
change along the length of the straight portion.

One issuc that remains to be studied is the interface to the surface reconstruc-
tion algorithm. Consider the image of a triangle shown in Figure 1. ‘There
are. in general. three different perceived orientations of the triangle correspond-
ing to propagating the interpretation of cach of the (high curvature) corners.
Adjacent corners give inconsistent information. and so it scems necessary o use
a labelling approach such as that proposed by Zucker, Hummel. and Rosenfeld
[1977).

7. Related work

Gibson [1950] has argucd that surface orientation is directly determined by
certain “higher order variables” in the proximal stimulus array. What cxactly
constitutes a “higher order variable™ has heen the subject of cxtensive debate.
Nevertheless, Gibson and his followers have proposed several such, especially
for optical flow and texture gradicnts. Flock {1964, Flock et. al. 1967] have
adopted a Gibsonian perspective on the judgement of slant in texture gradients.
He has introduced a "higher order variable™ oprical slant (actually “optical
theta” 1n the original) as a possible basis for monocular stant pereeption [FFlock
1964, Eg. §] or. at feast, as a discrimimant for plananty. Flock's work implicitly
assumes planarity [Flock 1964, p. 381, and it assumes that the tilt direction
has been computed previousls. In fact. there are many assumptions in Flock's
paper (Frecman fl96S, p. 502] counts 13). Morcover, saveral studies [Clark
ct. al. 19536, Gruber and Clark 1956, Freeman 1965, Braunstein and Payne
1969] have shown that the determination of surface oricntation from texture
gradients, for example using optical slant or as in Tkeuchi [1983]. is less effective
than its determinaton from bounding contour,
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(a) (b)
Figure 7

a. A box-like figure typical of those studied by Attneave and Frost [1969). b. A sheared
box.

Attneave {1972, sce also Attncave and Frost 1969] describes an approach
to determining surface orientation that has similaritics to that developed here.
First, he argues for a Pracgnanz theory of perception. which stresses economy
principles in perception. This has meant different things to different researchers.
The Gestalt psychologists explicitly noted the link between Pracgnanz and
minimization principles (for example the soap bubble) in mathematical physics.
Attneave {1972, p. 285] suggests that such minima may be computed by "hill--
climbing techniques”. The extremum principles discussed in Section 3 of this
paper and surveyed in [Brady and Horn 1983, Grimson 1981, 1982, 1983, and
Terzopoulos 1983] can be considered to be more sophisticated formalizations of
similar intuitions.

In fact, Attneave adopts Hochberg's formulation of the Pracgnanz theory as
the tendency to keep difierences to a minimum. In particular he considers
three-dimensional interpretations that equalize one or more of angles, lengths
of edges. and surface stopes in figures such as Figure 7a. 'The more of these
that are in fact cqualized in a particular three-dimensional interpretation of an
imagc. the more likely that interpretation is to be chosen. In fact, the extremum
principle developed in this paper will interpret Figure 7a correctly. It will also
determine the shear in 1'igure 7b.

Sccond. Attncave [1972, Fig. 4] considers the judged orientation of rhombus
figures (we Appendix 1) below for analysis of this case by our extremum
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principle.) Surface orientation can be judged reliably for such shapes, more
reliably in fact than for the box figures shown in Figure 7. so long as the
ssmmetries of the thombus do not align with the horizontal and verucal, Tt is
well known that the horizontal and vertical are important for shape description,
(sce for example Brady [1983] for discussion). Note that surface slant is
consistently underestimated.

In order to express depth constraints, Barnard [1982] and Tkcuchi [1983)
have proposed alternative projections to orthographic projection used in the
development in Scctions 3 and 4. ‘The methods we have developed extend
straightforwardly to these alternative projections.

Barnard [1982] finds surface orientation from vanishing points of families of
parallel edges using central or perspective projection. He considers the projec-
tion of an angle. and. after the fashion of Hochberg and Attncave, heuristically
assumes equi-angularity to arrive at a three-dimensional interpretation of a
triangle. As noted in Appendix C, our method dispenses with the need for such
a heuristic assumption. Similar remarks apply to Barnard's study of curvature.

Ikcuchi [1983] proposes a method for determining surface orientation for a
surfiace that is covered with uniformly repeating texture elements. He assumes
that the surface clement corresponding to the texture clement is planar. Most
critically it is assumed that the shape of the texture element is known a priori.
FFor a particular slant and tlt, the orientation of the projection of the known
figure changes. lkcuchi proposes a measure that is superficially similar to the
svmmetry mecasure in Scction 4 to determine the slant and tilt of a texture
clement.

Olson [1974] has studied a version of Ames’ trapezoidal window illusion.
Surface slant is judged more accurately when the stimulus is moving consistent
with the static three-dimensional interpretation than in the purely static casc.
Similarly, Wallach, Weisz, and Adams 1956] have shown that when an ellipse
is rotated in the image planc about an axis passing through its center and
normal to the image it is perceived as a spinning oriented circle, like a scttling
spinning penny. The instantancous surface orientation of the oriented circle
can be computed by our method. Hildreth's forthcoming Phi) thesis on the
pereeption of motion discusses the rotating cllipse and proposed a theoretical
explanation of human perception of it.

S st
e




Appendix A The navinuon likelibood method applied to an ellipse

Fquation (4.30) gives the value F of the logarithm of the Maximum Likelihood
estimator for surface orientation:

F = log coso/dr - flog(cos"’ 0 + sin? ocos?(a — 7))dr. (A1)

In this Appendix we investigate the slant computed by the Maximum Likelihood
method for the ellipse

2 y2

b2

It is convenient to usc the standard parameterization,

=+

Gt a=t (4.2)

T = acosf
y = bsin§, 0<0< 27 (A.3)
dr = (a?sin?8 + b° cos® §)}af

Pending a more thorough analysis, we asswme that the tilt 7 = 7/2 is computed
correctly by the Maximum Likelihood method, and restrict attention to slant.
Witkin J1981, Figure 5] and our own computational experiments suggests that
this is reasonable: in any case, if it is not so, the inequivalence of the Maximum
Likelihood and Fxiremum Principic methods would be assured. Without loss
of generality, we assume that @ > b, and denote a/b by A > 1.

Since 7 = 7/2,

2 1
coslaq = ———
1+ tan?a

a’sin? 6

, (A-4)

a?sin? 8 + b2 cos? §

since tan @ = dy/dz. Also,

. , T

sin(a — 1) = sin{a — 5) = —cosq, (A.5)
and so Eq. (A1) reduces to

F =log cosafdr — flog(l — cos? asin® 0)dr. (A.6)

We arc interested in extrema of F', and so we consider dF /do, which we
write
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. .2
coto?l = f afsin®fcos’o —Heos8, 4y
o a?sin® 0 cos2o + b2 cos? 0

Suppose that the Maximum 1ikclihood method is extremized at 0 = o'
‘The slant that is necessary to interpret the cllipse as a circle is given by
cosog = 1/x. The Maximum Likclihood method overestimates slant if and
only if o' > cos™!(1/)), which is if and only if coso’ < 1/X\. This is true
if dF {do % 0 for all o such that 1 < hcoso < A. Denote hcoso by g,
so that 1 < x < X. Substituting in Eq. (A.7) and changing the limits of
integration, we find

w2520 2 9

ar =2 E—ifn—zu)—s—-()\zsin2 8 + cos® 0)5d0 (A.8)
do 0 u2sin®f + cos?d

We now split the range of integration into four equai intervals of size 7 /4.
With suitable changes of variables to bring the intervals of integration to [0, §].

we find

H 2 29 _ 4ip?
aF _4/(;4 u cos sin 0()\2cos20+sin20)5

do u2cos? 8 + sin% 6
u?sin?9 — cos?
u28in? 0 4 cos?

(A.9)
(A%sin® 0 + cos? 6)df

Over the range of integration. cos @ > sin 8. Algebraic manipulation of £q.
(A.9) shows it to be greater than zero, so that it is certainly not zero. Hence
the Maximum L.ikclihood method overestimates the slant.

o’
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Appendix B: Why square cunvature is inappropriate
In section 3 we rejected the measure
_— 2
F= /n ds (B.1)

because, despite popular belief to the contrary. it does not interpret an ellipse
as a circle. In this appendix we substantiate that claim.

Consider the cllipse defined by Egs. (A.2) and (A.3). The curvature & of the
¢llipse is given by

(B.2)

(B.3)
(a?sin? 8 + b2 cos? )3

where s is the arc length. Substituting Equation (B.3) into (13.1) we have

u 2n 252

F(a,b) = / : dé (B.4)

0 (a%sin?6 + b2 cos?§)3

Suppose. without loss of generality, that the ellipse is in the image plane and
that @ > b. Supposc further that the square curvature performance index (B.1)
is correct dand interprets the ellipse as a circle lying in a plane that is slanted
with angle ¢ to the y-axis, where

b= acoso (B.5%

Fquivalently, if we set b' = b/coso. the measure will choose ¢ such that
¥ == a. Hence it we write b == Xa. and consider F{a, b) to be a function of
A, the measure should be extremized by A = 1. We will now show that this is
not the case.

2” 2 .
FO) = 1 / A a8 (B.6)
@70 (5in?9 + N2 cos?4)}

DitTerentiating this with respeet to X gives

LT N de (B.7)
(sin? 0 + X2 cos? §)}

oF 1 /2" 22sin®8 — 33 cos? @
(2N a/o
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Fvaluating this expression at A = 1 gives
l 2‘”
oF = _/ (2sin®0 — 3 cos®4)dd
or A==1 aJso
™
=-— (B.8)

Since the partial of F with respect to A docs not vanish when A is equal to
one, the circle does not extremize the ellipse for the square curvature measuse.




Appendix C: The interpretation of some simple shapes

In this appendix we show that our method correctly interprets a number of
simple shapes. namely an cllipse, a parallclogram, and a triangle.
Ellipse

Suppose the cllipse is given by equations (A.2) and (A.3). It is casy to show

that the arca A and perimeter P are given by
A = mab
2n
C.1
P =/0 (a®sin? 0 + b% cos?9)*do (1)

Maximizing A/P? is equivalent to minimizing P/vA. We set b = ha, (\ is
the cccentricity of the cllipse,) and define /VA = f(\). We find

sin

1 [? sin®6
f(X):«\/—;/‘; (= + A cos? 0)dg (C.2)

By the same argument presented in appendix B, the cllipse will be interpreted
as a circle provided N = 1 is a minimum of f(X\). Changing the variable of
the integral to ¢ = # 4 § we find that

0 =1(3) €3

which implies that X = 1 cxtremizes f(X). It is also clcar that extrema occur
i pairs of the torm X, 1/%. Furthermore, both are stationary points or onc
is a maximum and the other a minimum, Observe that f() tends to infinity
as A tends either to zero or infintty. It follows that a sufficient condition for
A =1 to be a global minimum is that all pairs of extrema be stationary points.
Supposc that this is not the case. and let g be the smallest extremum that is
not a stationary point. Since f(X\} tends to infinity as X tends to zcro, Ao must
be a minimum and 1/Xg a maximum. But 1/Xg is the largest non-stationary
extremum, and so, by the samc argument as above, it must be a minimum.
This contradicdon establishes the result.

Paralleiogram and riangle

In section 5 we showed that a skew symmetry is always interpreted as an
oriented svimmetry by our method. In particular, a parallclogram is interpreted
as a rectangle. By the same argument, a rectangle is a skewed symmetry of a
square. Henee our method interprets a paraliclogram as a square.

Simnilar reasoning shows that a triangle is interpreted as a skewed isosceles
triangle, which is interpreted as a skewed equilateral triangle. ‘The axes of the
skewed symmetry join a vertex to the midpoint of the opposite side. Hence
our method interprets a triangle as an oriented equilateral triangle.




Appendix 1): The slant and tilt of a skewed symmetry

In this appendix we calculate the slant o and the tilt 7 that correspond to the
oriented real symmetry that is the interpretation of a skewed symmetry whose
skew angle is 6.

As a simple, though instructive, example, consider a thombus of side a and
included angle «y (Figure 8). To find the extremizing tilt, we substitute the data
from Figure 8 into Fq. 4.24, and find

___sinTcosT + sin{r — ) cos(r — 9) 0 (D.1) |

3
{1 — sin? o sin? 1}é {1 — sin’o sin"’(r - ’7)}

We can rewrite this in the form

{cosz(r — 4) — cos? r} {cosz(T — ) + cos®7

+ (1 — cos?0)(1 — cos?(r — 7))(1 — cos? 1) — l}
=0

(D.2)
We assume first that the first factor is zero. It follows that
cos(T — ) = f-cosT (D.3)
and so
v~ 27 =nm. (D.4)

Since 0 < 7 < mand 0 < v < 7. there are two possible solutions. namely

(D.5)

-
I
=2 N2

+ 7
2
Observe that the tilt direction is one of the axes of symmetry of the rhombus
shown in Figure 8.

Having solved for the tilt, we now solve for the extremizing slant o using
kg, 4.23. Recalling from 1:q. D.4 that sing(r — ) == sin® 7. we find upon
substitution into Eq. 4.23

T =

(D.6)

1 H
é{l — sin? o sin? T} = cos® T{I — sin? g sin® 7'} (D.7)




which we solve to get

2
cos?g = oL, (D.8)

sin® 7

The requirement that coso| < 1 picks out ecither Egquation (1.5) ar (1.6),
so we get a unigue solution. In this case the skew angle is given by

§=12 —n. (D.9)
2 )
To summarize, if § < 0 we get
A
TTiT 2
1+ siné (D-10)
080 = ———
cosd
and if 6§ > 0,
3= &6
YA T2
cos b (D.11)
€080 = ————,
1+4siné

These formulae were derived for an equal-sided parallelogram but they will
clearly apply to the more genceral case and a rotation through the angles given
by Fquations (1D.10) and (1).11) will unskew any symmetry. It should be noted
that 7 is taken to be sero on the axis of symmetry, as in Figure 8.

To conclude this Appendix, we consider the case that the second factor in
Eq. (1).2) is zcro and the first factor non-zero. We introduce the angle 3 by
analogy with Eq. (2.1) defining orthographic projection:

tan® ¢ = cos? o tan?(y — 1) (D.12)
Then
t 2
sin®(y —7) = %
cos cr-{—2 an (D.13)
2 cos’o
cos’(y — 1) =

cos o + tan?y

where, without loss of generality, we suppose 0 < ¢ < 7/2. Now by
assumption, the second factor in Eq. (1).2) is zcro:

Zrsin}(y—~7)—1=0 (D.14)

cos® 7 + cos?(y — )+ sin® osin
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Figure 8
A typical skew symmetric figure. namely a rhombus of side a and included angle +. with

skew angle § = 5 -~ y. The ult direction is aligned with one of the axes of symmetry
of the rhombus. determined by the angle 6.

Using Eq. (1D.13), we find

tan® 7tan? Y =1,

from which we deduce

sint = cosy ( )
D.15

cosT = usiny, u= 41,
since the ranges of the variables can be assumed to be 0 < 0 < 7/2;0 <
1< m0< Y <n/2;0 <y <7 From Eq. (1D.13) we find that
. vtanycoso
sin(y — 7)cos(y — 1) = coa -t' iy v = 41, (D.18)
and. since sin 7 cos 7 has the same sign as sin(y — 7)cos(y— 7). 4 = v. From
Eg. (D.1) we deduce

sin7cosT

2

— sin(j_-_" T) cos(y — T)
2

2,3 1 —sin osinz('y—f)i
vsinycosy

1 — sin“o sin

(D.17)

1 — sinzacos?t/)i




k)|

So far in this Appendix we have only used one of the constraints derived in
Section 4, namely Eq. (4.24) (from which we derived Eq. (I).1)). We now use

the second constraint q. (4.23), which we can write in the form

2
2eos’T — (1 — sin? o 2r)}
(1 —sin?osin®7)}
2cos?(y — 1)
(1 — sin? g sin?(y — 7))}

2

— (1 — sin® o' sin?(y — Nt =0

After some algebraic manipulation, we deduce

coso = — tan® ¥,

(D.18)

from which it follows that cos o is negative, which is impossible in the range
under consideration.
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